Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

Improved identification of primary biological aerosol

2 particles using single particle mass spectrometry

3

- 4 Maria A. Zawadowicz¹, Karl D. Froyd^{2,3}, Daniel M. Murphy², and Daniel J.
- 5 Cziczo^{1,4}
- 6 [1]{Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of
- 7 Technology, Cambridge, Massachusetts}
- 8 [2]{NOAA Chemical Sciences Division, Boulder, Colorado}
- 9 [3]{Cooperative Institute for Research in Environmental Sciences, University of Colorado,
- 10 Boulder, Colorado}
- 11 [4]{Department of Civil and Environmental Engineering, Massachusetts Institute of
- 12 Technology, Cambridge, MA, United States}
- 13 Correspondence to: D. J. Cziczo (djcziczo@mit.edu)

1415

Abstract

- 16 Measurements of primary biological aerosol particles, especially at altitudes relevant to cloud
- 17 formation, are scarce. Single particle mass spectrometry (SPMS) has been used to probe
- 18 aerosol chemical composition from ground and aircraft for over 20 years. Here we develop a
- 19 method for identifying bioaerosols using SPMS. We show that identification of bioaerosol
- 20 using SPMS is complicated because phosphorus-bearing mineral dust and phosphorus-rich
- 21 combustion by-products such as fly ash produce mass spectra with peaks similar to those
- 22 typically used as markers for bioaerosol. We have developed a methodology to differentiate
- 23 and identify bioaerosol using machine learning statistical techniques applied to mass spectra
- 24 of known particle types. This improved method provides far fewer false positives compared to
- 25 approaches reported in the literature. The new method was then applied to ambient data
- 26 collected at Storm Peak Laboratory to show that 0.04-0.3% of particles in the 200 3000 nm
- 27 aerodynamic diameter range were identified as bioaerosol.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

1

© Author(s) 2016. CC-BY 3.0 License.

1 Introduction

- 2 Primary biological aerosol, hereafter "bioaerosol", include intact and fragmentary microbes,
- 3 fungal spores and vegetation. One particularly important role of bioaerosol in the atmosphere
- 4 is that certain species of bacteria and plant material might impact climate via the nucleation of
- 5 ice in clouds (Hiranuma et al., 2015; Möhler et al., 2008). However, field-based
- 6 measurements of ice nuclei and ice residuals do not indicate that bioaerosol are a major class
- 7 of ice active particles (Cziczo et al., 2013; DeMott et al., 2003; Ebert et al., 2011).
- 8 Uncertainties continue to exist because field measurements of ice nucleating particles are
- 9 currently sparse. Modeling efforts also suggest that biological material is not significant in ice
- 10 cloud formation on a global scale. Hoose et al. (2010) has shown that global average
- 11 contribution of bioaerosol to heterogeneous ice nucleation in mixed phase clouds is small:
- 12 with higher than realistic freezing efficiencies, the total contribution of biological aerosol
- remained less than 1%. Later studies by Burrows et al. (2013), Sesartic et al. (2012, 2013) and
- 14 Spracklen and Heald (2014) support this result. These studies do identify circumstances
- where bioaerosol can have an influence on clouds. For example, at low altitudes bacteria can
- dominate immersion freezing rates, where the conditions are too warm for mineral dust to
- 17 activate (>15°C) (Spracklen and Heald, 2014). Additionally, bioaerosol can dominate the
- 18 aerosol coarse modes in certain regions. For example bioaerosol can be 50% of the coarse
- mode over tropical forests compared to a 5-8% global average (Spracklen and Heald, 2014).
- 20 There are measurements of this enhancement in the Amazon basin, supporting possible
- 21 regional effects of bioaerosol (Artaxo et al., 1990; Prenni et al., 2009).
- 22 Measurement techniques specific to bioaerosol include collection of aerosol on filters
- 23 followed by analysis with microscopy techniques, either electron microscopy (EM) or optical
- 24 microscopy coupled with fluorescent staining of the samples (Amato et al., 2005; Bauer et al.,
- 25 2002, 2008; Bowers et al., 2009, 2011, 2012; Griffin et al., 2001; Matthias-Maser and
- Jaenicke, 1994; Pósfai et al., 2003a; Sattler et al., 2001; Wiedinmyer et al., 2009; Xia et al.,
- 27 2013). Aerosol samples collected in the atmosphere have been cultured for identification of
- the microbial strains present (Amato et al., 2005, 2007; Fahlgren et al., 2010; Fang et al.,
- 29 2007; Griffin et al., 2001, 2006; Prospero et al., 2005). However, culturing techniques can
- 30 underestimate microbial diversity, as not all organisms present in the atmosphere are viable or
- 31 cultivable using standard media. It has been suggested that <10% of bacteria found in
- 32 atmospheric aerosol are cultivable (Amato et al., 2005; Georgakopoulos et al., 2009).

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 In-situ techniques specific to biological samples are typically based on fluorescence of
- 2 biological material following UV excitation. Examples include the wide-band integrated
- 3 bioaerosol sensor (WIBS) which is available commercially (Kaye et al., 2000, 2005). WIBS
- 4 has been successfully deployed in several locations (Gabey et al., 2010; O'Connor et al.,
- 5 2014; Toprak and Schnaiter, 2013). Using fluorescence to detect biological aerosol can have
- 6 interferences, however. For example, polycyclic aromatic compounds or humic acids can
- 7 have similar fluorescent properties (Gabey et al., 2010; Pan et al., 1999). Cigarette smoke has
- 8 similar fluorescent properties to bacteria (Hill et al., 1999). In an attempt to address
- 9 interferences, WIBS collects fluorescence information using several channels with different
- wavelengths while also measuring the size and shape of the particles.
- 11 Table 1 summarizes recent measurements of bioaerosol in the atmosphere. Apart from WIBS,
- 12 the other recent measurements are collection of the aerosol on filters followed by off-line
- 13 microscopy. Biological particles have been measured at variety of ground sites, including
- urban (Bauer et al., 2008; Fang et al., 2007; Toprak and Schnaiter, 2013), rural (Bowers et al.,
- 15 2011; Harrison et al., 2005), forest (Gabey et al., 2010), marine (Griffin et al., 2001; Pósfai et
- al., 2003a) and remote (Xia et al., 2013). High-altitude mountain sites, such as Jungfraujoch,
- 17 Storm Peak Laboratory, Mt. Rax and Mt. Bachelor Observatory are often used to gain access
- to free tropospheric air less impacted by local sources (Bauer et al., 2002; Bowers et al., 2012;
- 19 Smith et al., 2012, 2013; Wiedinmyer et al., 2009; Xia et al., 2013). Measured concentrations
- range from 2.9×10^3 to 1.5×10^6 particles m⁻³, and bioaerosol can make up from 0.5% to 22% of
- 21 atmospheric aerosol by number greater than 500 nm. There is a strong seasonal cycle to
- 22 biological material (Bowers et al., 2012; Harrison et al., 2005; Toprak and Schnaiter, 2013).
- 23 Bioaerosol tend to be primarily bacteria and some fungal spores, although pollen (O'Connor
- et al., 2014) and possibly viruses (Griffin et al., 2001) have been reported. Some studies have
- 25 performed DNA analysis of bioaerosol, reporting a wide diversity (Smith et al., 2012, 2013;
- 26 Xia et al., 2015).
- 27 Bioaerosol has also been reported in cloud water (Amato et al., 2005; Bauer et al., 2002;
- 28 Sattler et al., 2001) and precipitation samples (Bauer et al., 2002; Christner et al., 2008a,
- 29 2008b; Sattler et al., 2001). This does not necessarily mean the bioaerosol play a role in
- 30 droplet nucleation processes, however, as scavenging of interstitial aerosol happens frequently
- 31 in and below clouds (Pruppacher and Klett, 2003). It does illustrate that microorganisms,

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

7

12

© Author(s) 2016. CC-BY 3.0 License.

1 sometimes viable ones, can be transported by the atmosphere and deposited by precipitation

2 (Amato et al., 2005).

3 Measurements of bioaerosol in the free and upper troposphere, where they could be relevant

4 to cloud formation, remain scarce. Four of the recent studies reported in Table 1 used an

5 aircraft to access altitudes higher than 4,000 m (DeLeon-Rodriguez et al., 2013; Pósfai et al.,

6 2003a; Twohy et al., 2016; Ziemba et al., 2016). Two of these used the WIBS sensor to report

vertical profiles of fluorescent particles (Twohy et al., 2016; Ziemba et al., 2016). In the

8 remaining two cases, aerosols were collected on filters and analyzed off-line. Pósfai (2003a)

9 reported results of Transmission EM (TEM) measurements of samples collected around Cape

10 Grim that included bacteria with rod-like morphology. It should be noted that numerous other

11 studies of samples collected on aircraft missions with TEM microscopy did not reveal the

presence of any aerosols that matched morphology of biological material (Buseck and Posfai,

13 1999; Li et al., 2003a, 2003b; Pósfai et al., 1994, 1995, 2003b). There can exist significant

uncertainty in these measurements. A recent aircraft-based study by DeLeon-Rodriguez et al.

15 (2013) reports analysis of high altitude (8-15 km) samples taken before, after and during two

16 major tropical hurricanes. The abundances of microbes, mostly bacteria, were reported

between 3.6×10^4 and 3.0×10^5 particles m⁻³ in the 0.25 - 1 µm size range. The methods and

18 conclusions of this study were re-evaluated by Smith and Griffin (2013), who argued that in

19 some instances the reported concentration of bioaerosol were not possible because they

20 exceeded the total aerosol by several factors. The samples were also taken over periods of

21 hours, possibly including sampling in clouds when the high-speed impaction of droplets and

22 ice can dislodge particles from the inlet (Cziczo and Froyd, 2014; Froyd et al., 2010; Murphy

23 et al., 2004).

24 Although difficult, measurements of bioaerosol in the upper troposphere are necessary in

25 order to constrain their influence on atmospheric properties and cloud formation processes.

All of the techniques discussed above, except for WIBS, are off-line and require expertise in

27 sample processing and decontamination. WIBS is a possible in situ detection technique for

28 bioaerosols, but it is relatively new and, as a result, has a short deployment history. There has

29 been considerable interest in using aerosol mass spectrometry techniques to measure

30 bioaerosol. Single particle mass spectrometry (SPMS) has been successfully used since the

31 mid-1990s to characterize chemical composition of atmospheric aerosol particles in situ and

32 in real time (Murphy, 2007). The ability of SPMS to simultaneously characterize volatile and

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

18

© Author(s) 2016. CC-BY 3.0 License.

1 refractory aerosol components makes it an attractive tool for investigating the mechanisms of

2 cloud formation (Cziczo et al., 2013; Friedman et al., 2013). The general principle behind

3 SPMS, and in particular the instrument discussed in this paper, the Particle Analysis by Laser

4 Mass Spectrometry (PALMS), is the use of a pulsed UV laser for the ablation and ionization

5 of single aerosol particles. Ions are then accelerated into a time-of-flight mass spectrometer.

6 Laser ablation/ionization used with SPMS produces ion fragments and clusters and is

7 susceptible to matrix effects such that quantitative results are possible only with careful

8 calibration and consistent composition (Cziczo et al., 2001).

9 Biological aerosols have been studied with SPMS, in particular the Aerosol Time of Flight

Mass Spectrometer (ATOFMS; Cahill et al., 2015; Creamean et al., 2013; Fergenson et al.,

11 2004; Pratt et al., 2009). A property of SPMS bioaerosol spectra that has been exploited for

their detection is the presence of phosphate (PO, PO₂, PO₃) and organic nitrogen ions (CN,

13 CNO⁻) (Cahill et al., 2015; Fergenson et al., 2004). Those ions have also been shown to be

14 present in non-biological particles with the same instrument, however, such as vehicular

15 exhaust (Sodeman et al., 2005). One goal of this work is to examine the prevalence of these

ions in the context spectra collected with other SPMSs.

17 Phosphorus is a limiting nutrient in terrestrial ecosystems (Brahney et al., 2015). On the

global scale, phosphorus-containing dust aerosols are primarily responsible for delivering this

19 nutrient to oceans and other ecosystems (Mahowald et al., 2008, 2005). Bioaerosols can be an

20 important source of atmospheric phosphorus on local scales, especially in heavily forested

21 areas, like the Amazon (Mahowald et al., 2005). The global phosphorus budget has been

22 modeled by Mahowald et al. (2008), indicating that 82% of the total burden is emitted in the

form of mineral dust. Bioaerosol accounts for 12% and anthropogenic combustion sources,

including fossil fuels, biofuels and biomass burning, account for 5% (Mahowald et al., 2008).

25 Recently, Wang et al. (2014) provided a higher estimate of phosphorus emissions from

anthropogenic combustion sources, 31%. In this estimate, mineral dust was responsible for

27 27%, bioaerosol 17% and natural combustion sources 20% of total phosphorus emissions

28 (Wang et al., 2014). These examples illustrate the major factors in the global phosphorous

29 budget but also that significant uncertainties exist in the emission inventories. A second goal

30 of this work is to determine if the non-biological phosphate aerosols, such as those from

31 minerals and combustion, can be detected and differentiated from bioaerosol.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

1 2 Experimental

2 2.1 PALMS

- 3 The objective of this work is to describe and validate a new SPMS-based data analysis
- 4 technique that allows for the selective measurement of bioaerosol. A dataset of bioaerosol,
- 5 phosphate-rich mineral and coal fly ash single particle spectra the three largest sources of
- 6 phosphorous in atmospheric aerosols was used to derive a classification algorithm for
- 7 biological and non-biological phosphate-containing material. This classifier was then applied
- 8 to an ambient data set collected at the Storm Peak Laboratory during the Fifth Ice Nucleation
- 9 workshop—phase 3 (FIN03).
- 10 The NOAA PALMS instrument has been discussed in detail elsewhere (Cziczo et al., 2006;
- 11 Thomson et al., 2000). Currently, there are two copies of the PALMS instrument, both of
- 12 which were used in this work. The laboratory PALMS is a prototype for the flight PALMS,
- 13 which is more compact and can be deployed unattended at field sites and on aircraft
- 14 (Thomson et al., 2000). Briefly, PALMS uses an aerodynamic lens to sample aerosols and
- impart them with a size-dependent velocity (Zhang et al., 2002, 2004). Aerodynamic particle
- 16 diameter is measured by timing the particles between two continuous-wave laser beams (532
- 17 nm Nd:YAG in laboratory PALMS and 405 nm diode in flight PALMS). The particles are
- 18 ablated and ionized in one step by a 193 nm excimer laser. A unipolar reflectron time of flight
- 19 mass spectrometer is then used to acquire mass spectra. Due to the high laser fluence used for
- 20 desorption and ionization (~10⁹ W/cm²), PALMS spectra show both atomic ions and ion
- 21 clusters, which complicate spectral interpretation. SPMS is considered a semi-quantitative
- 22 technique because the ion signal depends on the abundance and ionization potential of the
- substance, rather than solely its abundance (Murphy, 2007). Additionally, the ion signals can
- depend on the overall chemical composition of the particle, known as matrix effects (Murphy,
- 25 2007). The lower particle size threshold for PALMS is ~200 nm diameter and is set by the
- amount of detectable scattered light. The upper size threshold is set by transmission in the
- 27 aerodynamic lens at ~3 μm diameter (Cziczo et al., 2006). The 193 nm excimer laser can
- 28 ionize all atmospherically-relevant particles within this size range with little detection bias
- 29 (Murphy, 2007). The ionization region is identical in the laboratory and flight PALMS
- 30 instruments.
- 31 2.2 Test samples

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

1 A collection of phosphorus-containing samples of biological and inorganic origin were used

2 for this work. Some of the samples were analyzed with the laboratory PALMS at the Aerosol

3 Interaction and Dynamics in the Atmosphere (AIDA) facility at Karlsruhe Institute of

4 Technology (KIT) during the Fifth International Ice Nucleation Workshop—phase 1 (FIN01)

5 with the remainder sampled at MIT.

6 Biological aerosol sampled at AIDA included two aerosolized cultures of Pseudomonas

7 syringae bacteria, Snomax (Snomax International, Denver, CO) (irradiated, desiccated and

8 ground Pseudomonas syringae) and hazelnut pollen wash water. The Snowmax and P.

9 syringae cultures were suspended in water and aerosolized with a Collison-type atomizer. The

10 growth medium for P. syringae cultures was Pseudomonas Agar Base (CM0559, Oxoid

11 Microbiology Products, Hampshire, UK).

12 Biological aerosol sampled at MIT included giant ragweed (Ambrosia trifida) pollen, oak

13 (Quercus rubra) pollen, European white birch (Betula pendula) pollen, Fusarium solani

spores and yeast. Samples of dried pollens and F. solani spores were purchased from Greer

15 (Lenoir, NC). Information supplied by the manufacturer indicates that F. solani fungus was

16 grown on enriched trypticase growth medium and killed with acetone prior to harvesting the

17 spores. Ragweed and oak pollen originated from wild plants, while the birch pollen originated

from a cultivated plant. Pollen was collected, mechanically sieved and dried. The yeast used

in this experiment was commercial active dry yeast (Star Market brand). The yeast powder

20 was sampled by PALMS from a vial subjected to slight manual agitation. Pollen grains were

21 too large (18.9 – 37.9 μm according to manufacturer's specification) to sample with PALMS.

22 They were suspended in Milli-Q water (18.2 MΩ cm, Millipore, Bedford, MA) and the

23 suspensions were sonicated in ultrasonic bath for ~30 minutes to break up the grains. Large

24 material was allowed to settle to the bottom and a few drops of the clear solution from the top

25 of the suspensions were further dissolved in ~5 mL of Milli-Q water, and the resulting

26 solutions were aerosolized with a disposable medical nebulizer (Briggs Healthcare,

27 Waukegan, IL). A diffusion dryer was used to remove condensed phase water prior to

28 sampling with PALMS. F. solani spores were sampled in two different ways: (1) dry and

29 unprocessed, in the same way as the yeast and (2) fragmented in ultrasonic bath and wet-

30 generated, in the same way as pollen samples. No processing-related changes to chemistry

31 were found.

18

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 Internally mixed biological/mineral particles were also analyzed at MIT. Illite NX (Clay
- 2 Mineral Society) without bioaerosol was sampled dry, using a shaker (Garimella et al., 2014),
- 3 and wet-generated, using a medical nebulizer containing Milli-Q water. A second disposable
- 4 medical nebulizer was then used to aerosolize a solution of illite NX and F. solani spores.
- 5 This wet generated aerosol was also dried with a diffusion dryer prior to PALMS sampling.
- 6 Samples of fly ash from four coal-fired U.S. power plants were used as proxy for combustion
- 7 aerosol: J. Robert Welsh Power Plant (Mount Pleasant, TX), Joppa Power Station (Joppa, IL),
- 8 Clifty Creek Power Plant (Madison, IN) and Miami Fort Generating Station (Miami Fort,
- 9 OH). The samples were obtained from a commercial fly ash supplier, Fly Ash Direct
- 10 (Cincinnati, OH). Fly ash was dry generated with the shaker.
- 11 Apatite and Monazite-Ce mineral samples were generated from ~3" pieces of rock. The rocks
- 12 were ground and the samples aerosolized with the shaker. Both apatite and monazite were
- 13 sampled and processed at MIT. The apatite rock was contributed by Adam Sarafian (Woods
- 14 Hole Oceanographic Institution, Woods Hole, MA).
- 15 Samples of apatite and J. Robert Welsh Power Plant fly ash were also subjected to processing
- 16 with nitric acid to approximate atmospheric aging. Powdered sample was aerosolized from
- 17 the shaker to fill a 9 L glass mixing volume. A hot plate below the volume was used to heat
- 18 the air inside to 31°C measured in the center of the volume with a thermocouple. PALMS
- sampled at a flow of 0.44 slpm from the 9 L volume. This constituted unprocessed aerosol.
- 20 80% HNO₃ was then placed with a Pasteur pipette at the heated bottom of the mixing volume.
- 21 Two experiments were conducted: for 0.1 mL experiments the entire volume of HNO₃
- evaporated, producing an estimated partial pressure of about 0.005 atm in a static situation. In
- 23 1 mL experiments some liquid HNO₃ remained at the bottom of the volume with an estimated
- 24 partial pressure of HNO₃ of 0.04 atm. The aerosol and gas-phase HNO₃ were allowed to
- 25 interact for 2 minutes at which point PALMS began sampling from the volume.
- 26 Samples of natural soil dust were collected from various locations listed in Table 2. Five
- 27 sampled were investigated at the AIDA facility during FIN01 (Bächli soil, Argentina soil,
- 28 Ethiopian soil, Moroccan soil and Chinese soil) with the remaining analysis at MIT (Storm
- 29 Peak and Saudi Arabian soil). Two samples of German soil were used as an example of
- 30 agricultural soil that was known to be fertilized with inorganic phosphate. These were also
- 31 sampled at the AIDA facility during FIN01.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

- 1 2.3 Statistical analysis
- 2 A support vector machine (SVM), a supervised machine learning algorithm (Cortes and
- 3 Vapnik, 1995), was used as the statistical analysis method for analysis of these data. A portion
- 4 of the data from each of the bioaerosol and non-biological phosphate samples was used as
- 5 "training data" to build the algorithm. The remaining data were differentiated by the trained
- 6 algorithm and the correctness judged based on their source. In this case a non-linear binary
- 7 classifier was constructed, using non-linear kernel functions (Ben-Hur et al., 2001; Cortes and
- 8 Vapnik, 1995). A Gaussian radial basis function kernel was empirically determined to provide
- 9 the best performance in this case. For this work, the SVM algorithm was implemented in
- 10 MATLAB 2016a (MathWorks, Natick, MA) using the Statistics and Machine Learning
- 11 toolbox.
- 12 2.4 Field data
- 13 The method was employed on an ambient data set acquired at the Desert Research Institute's
- 14 (DRI's) Storm Peak Laboratory located in Steamboat Springs, CO. Storm Peak Laboratory is
- located on Mt. Werner at 3220 m elevation at 106.74 W, 40.45 N. This high altitude site is
- 16 often in free tropospheric air, mainly during overnight hours, with minimal local sources
- 17 (Borys and Wetzel, 1997). Ambient air was sampled using the Storm Peak facility inlet with
- 18 the flight PALMS instrument in September, 2015. Measurements were made during Fifth
- 19 International Ice Nucleation Workshop—phase 3 (FIN03).

20 3 Results

- 21 Figure 1 shows the spectra of biological species: P. syringae bacteria, Snomax and hazelnut
- 22 pollen wash water particles. These particles contain both organic and inorganic species.
- 23 Because they are easy to ionize, the inorganic species sodium and potassium stand out in the
- 24 positive spectra despite their minor fraction by mass. Sulfates, phosphates and nitrates are
- 25 present, and visible in their associations with potassium. Negative spectra are dominated by
- 26 CN, CNO, phosphate (PO₂ and PO₃) and sulfate (HSO₄). Higher mass associations of
- potassium and sulfates, phosphates and nitrates occur (K₃H₂SO₃-, K₂H₃NO₄-, K₃H₂PO₂- and
- 28 K₃H₃SO₃). Chlorine is present on some particles. Chlorine is a known contamination from
- 29 the Agar growth medium since spectra of aerosolized Agar devoid of bacteria contain large
- amounts of chlorine (not shown here).

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 Figure 2 shows spectra of apatite. In positive polarity, apatite spectra are dominated by
- 2 calcium, its oxides, and in associations with phosphate (CaPO⁺, CaPO₂⁺, CaPO₃⁺, Ca₂PO₃⁺
- and Ca₂PO₄⁺) and fluorine (CaF⁺, Ca₂OF⁺ and Ca₃OF⁺). Negative spectra are dominated by
- 4 phosphates (PO, PO₂ and PO₃) and fluorine is often present. Lab-generated apatite spectra
- 5 analyzed in this study contain little organic. This may be a result of post-processing of the
- 6 apatite sample, in particular the use of ethanol as a grinding lubricant. In contrast, ethanol was
- 7 not used in grinding the monazite sample here and its spectra exhibit peaks associated with
- 8 organic matter (C_2H^-) .
- 9 Figure 3 shows spectra of coal fly ash from the J. Robert Welsh Power Plant. The positive
- 10 spectra contain sodium, aluminum, calcium, iron, strontium, barium and lead. As in apatite,
- 11 calcium/oxygen, calcium/phosphate and calcium/fluorine fragments are present. Fly ash
- particles also contain sulfate (H₃SO₃⁺). The negative spectra contain phosphates (PO₂, PO₃),
- sulfates (HSO₄) and silicate fragments, such as (SiO₂)₂, (SiO₂)₂O, (SiO₂)₂Si and (SiO₂)₃.
- 14 The results of HNO₃ processing experiments are also shown in Figures 2 and 3. Processing
- 15 with nitric acid had an effect on both apatite and fly ash: the calcium/fluorine positive
- markers (CaF⁺, Ca₂OF⁺ and Ca₃OF⁺) and the negative fluorine marker (F) are either reduced
- in intensity or completely absent after processing. Additionally, CN and CNO appear and/or
- 18 intensify after processing.
- 19 A classifier was designed to use the ratios of phosphate (PO₂-, PO₃-) and organic nitrogen
- 20 (CN, CNO) spectral peaks. This approach has previously been used with PALMS data to
- 21 differentiate mineral dusts using silicate and metal peaks to reveal underlying differences in
- 22 chemistry (Gallavardin et al., 2008). Figure 4A shows normalized histograms of the PO₃-/PO₂
- 23 ratio for the test aerosol. The aerosols that contain inorganic phosphorus, such as apatite,
- 24 monazite, fly ash and soil dust, cluster at $PO_3^{-}/PO_2^{-} < 4$. The bioaerosols cluster at PO_3^{-}/PO_2^{-}
- 25 > 2. Processing of apatite with nitric acid tends to shift the PO_3^-/PO_2^- ratio to larger values,
- 26 increasing the disparity from the bioaerosols. Ragweed pollen is an exception, with a wide
- cluster in PO₃-/PO₂ from 1 to 5.
- A simple delineation can be made based only on the ratio of phosphate peaks at PO_3^-/PO_2^-
- 29 3. The misclassification rate of this simple filter is 20 30% for the materials considered here,
- with ragweed pollen and fly ash as the greatest sources of confusion between the bioaerosol
- 31 and non-biological classes. A lower misclassification between the bioaerosol and non-
- 32 biological classes can be achieved if the ratio of organic nitrogen peaks is also taken into

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

17

19

28

© Author(s) 2016. CC-BY 3.0 License.

1 account. Figure 4B shows normalized histograms of CN⁻/CNO⁻ ratios for the test aerosol. In

2 contrast to PO₃-/PO₂ ratios, CN⁻/CNO ratios do not, by themselves, exhibit a clear difference

3 between the classes. A superior separation is achieved when data are plotted in a CN-/CNO

4 vs. PO₃-/PO₂ space, as shown in Figure 5. In this case two clusters appear. The soil dust class

5 was left out from the training set because it is not known *a priori* if and how much biological

6 material it contains (classification with the SVM algorithm is discussed latter). The boundary

7 between the classes in CN⁻/CNO⁻ vs. PO₃⁻/PO₂⁻ space is non-linear: the SVM algorithm

8 "draws" this boundary, as shown in Figure 5. The misidentification rate in this 2D

9 classification is ~3%. As before, ragweed pollen is the cause of most errors; if it is removed

10 from training dataset, the misidentification rate falls to <1%.

11 Once trained with the laboratory data, the SVM algorithm was used to analyze the FIN03

12 field dataset collected at Storm Peak. As a first step, "phosphorus-containing" particles were

13 identified in the dataset. The criterion for phosphorus-containing used for this work is the

14 presence of both PO₂ and PO₃ ions at fractional peak area (area of peak of interest/total

15 spectral signal area) greater than 0.01. This threshold was set by examination of the ambient

16 mass spectra to determine when the phosphate peaks are above the noise threshold. Ambient

particles commonly have small peaks at masses below ~200 due to a diversity of organic

18 components. The height of this background is ~0.01 and data below this level are considered

uncertain. Phosphorus-containing ambient spectra were then classified by the SVM algorithm

as bioaerosol or inorganic phosphorous if the CNO ion was also present at fractional peak

area greater than 0.001. If CNO fractional area was less than 0.001, the spectrum was also

22 classified as inorganic phosphorus.

During the FIN03 campaign, phosphorus-containing particles represented from 0.2 to 0.5% by

24 number of the total detected in negative ion mode depending on the sampling day and a 0.4%

average for the entire dataset. As shown in Figure 6A when the binary classifier described in

26 this work was applied to the phosphorus-containing particles, bioaerosol represented a 29%

27 subset by number (i.e., 0.1% of total analyzed particles). This is within, and towards the lower

end, of previous estimates with biological-specific techniques (Table 1). This lower end

29 estimate may, in part, be due to PALMS sampling particles in the 200-500 nm diameter range

30 as well as larger sizes. Previous estimates tend to show increased bioaerosol in the super-

31 micrometer range and data are often unavailable for the numerous particles smaller than 500

32 nm diameter.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

- 1 The origin of the non-biological phosphate particles is likely phosphate-bearing mineral dust
- 2 or fly ash. At Storm Peak a likely source is mining of phosphate rock and nearby monazite
- 3 deposits. Figure 6B shows HYSPLIT back trajectories for the ten days of the FIN03
- 4 campaign; the air masses sampled cross deposits of either phosphate rock (apatite) or rare
- 5 earth elements (monazite or carbonatitie). As examples, on 09/27 the back trajectory
- 6 intersects the vicinity of an active REE mine in Mountain Pass, CA and on 09/18 and 09/20
- 7 the airmass intersected active phosphate mines in Idaho. Although negative spectra of apatite
- 8 and monazite cannot be definitively differentiated from fly ash or soil dust spectra, positive
- 9 spectra acquired during FIN03 provide additional evidence that monazite-type material was
- 10 present. In Figure 2, panels G and H show non-biological phosphate-rich ambient spectra
- 11 from FIN03. Figure 2 panels E and F (monazite) contains similar features and matching rare
- 12 earth elements.
- 13 In total, 56% of phosphate-containing particles analyzed in FIN03 categorized as biological
- 14 also contained silicate features. Considered in more detail in the next section, a subset of these
- may represent internal mixtures of biological and mineral components.

4 Discussion

16

17

4.1 Uncertainty in bioaerosol identification in PALMS spectra

- 18 The method of identification of bioaerosol described here is based on ratios of phosphate and
- 19 organic nitrogen peaks. This work is specific to PALMS but can be considered a starting point
- 20 from which identification and differentiation can be made with similar instruments. Previous
- work with PALMS shows this ratio approach can be used to identify differences in chemistry,
- 22 for example among mineral dusts (Gallavardin et al., 2008). In this case the classes are
- 23 bioaerosol and non-biological phosphorous; Figure 4A shows that phosphorus ionizes
- differently in these classes. In apatite and monazite, phosphorus occurs as calcium phosphate.
- 25 In biological particles, phosphorus occurs mostly in phospholipid bilayers and nucleic acids.
- In these experiments, the PO₃-/PO₂ ratio of those two forms is different (Figure 4A). The
- 27 agricultural soils considered here cluster with the minerals and fly ash and we assume the
- 28 phosphorous is due to the use of inorganic fertilizer, which is derived from calcium phosphate
- 29 (Koppelaar and Weikard, 2013). Fly ash aerosol clusters similarly to apatite and monazite but
- with a wider distribution; this is likely because the chemical from of phosphorus in fly ash is
- 31 different than in the minerals. Phosphorus present in coal is volatilized and then condenses
- into different forms during the combustion process (Wang et al., 2014).

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

- 1 Phosphorus peak ratios in biological particles cluster differently than in inorganic
- 2 phosphorous particles with ragweed pollen an exception (Figure 4A). No satisfactory
- 3 explanation for this observation has been found although contamination with phosphate
- 4 fertilizer cannot be ruled out. The classification error of the biological filter using PO₃-/PO₂-
- 5 and CN-/CNO ratios is 3% with ragweed alone the source of most of the error. This
- 6 unexplained behavior is a cause for concern, as the list of biological samples used as a
- 7 training set is extensive, but not exhaustive and other exceptions could exist.
- 8 During the FIN03 campaign at Storm Peak, 0.2-0.5% of particles by number detected in
- 9 negative polarity contained measureable phosphorus (Figure 6A). On most days, the majority
- 10 of phosphorus-rich particles were inorganic. Particles with positive spectra showing the
- 11 characteristics of monazite coupled to back trajectories over source areas provides evidence of
- the origin of the inorganic phosphate particles. Although apatite/monazite particles make up a
- 13 small portion of ambient particles at Storm Peak they are potentially interesting not only due
- 14 to their possible confusion with biological phosphate but also as a tracer for industrial mining
- 15 and processing activities. Currently, such activities are taking place in Idaho and until very
- 16 recently at Mountain Pass, CA (U.S. Geological Survey, 2016a, 2016b). Smaller exploration
- 17 activities are also taking place at the Bear Lodge, WY and the REE-rich areas in Colorado,
- 18 Idaho and Montana are of interest (U.S. Geological Survey, 2016a).

4.2 Comparison with existing literature

- 20 Previous studies have attempted to identify bioaerosol with SPMS based on the presence of
- 21 phosphate and organic nitrate components. Creamean et al. (2013) and Pratt et al. (2009b)
- 22 suggested a "Boolean criterion" where the existence of CN, CNO and PO₃ in a particle
- 23 resulted in its classification as biological. If a silicate components were additionally present,
- 24 the particle was classified as an internal mixture of mineral dust and biological components
- 25 (Creamean et al., 2013; 2014).

- 26 The selectivity of this simple three-component filter (presence or absence of CN⁻, CNO⁻ and
- 27 PO₃) for biological particles was investigated for PALMS using the test aerosol database with
- 28 results shown in Figure 7. The filter successfully picks biological material. However, it also
- 29 has a high rate of false positives. For the material that contains inorganic phosphorus (i.e.,
- 30 samples known to be devoid of biological material) the three-component filter selects 56% of
- 31 fly ash, 56% of agricultural dust and 32% of apatite and monazite. Soil dust is identified as
- 32 biological 78% of the time.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 The effect of misidentification of inorganic phosphate as biological can be considered in the
- 2 context of the atmospheric abundance of the three major phosphate bearing aerosols: mineral
- 3 dust, fly ash and bioaerosol (estimates given in Table 3). Because the emissions estimates
- 4 vary, the highest fraction of bioaerosol is the case of the highest estimate of bioaerosol
- 5 coupled to the lowest estimate of fly ash and mineral dust (Table 3 and Figure 8A).
- 6 Conversely, the lowest fraction of bioaerosol is the case of the lowest estimate of bioaerosol
- 7 coupled to the highest estimate of fly ash and mineral dust (Table 3 and Figure 8B).
- 8 The misidentification rates shown above are then propagated onto the high and low estimates.
- 9 As an example, the fraction of aerosol phosphate due to fly ash (1% in the high and 5% in the
- 10 low bioaerosol estimate) is multiplied by .56 to indicate the fraction of fly ash that would be
- 11 misidentified as biological phosphate with the simple three-component filter. This
- 12 misidentification effect is repeated for the mineral dust emission rate and misidentification
- 13 fraction. For simplicity, we considered the mineral dust fraction to be desert soils, termed
- 14 aridsols and entisols, which are predominantly present in dust-productive regions, such as the
- 15 Sahara or the dust bowl (Yang et al., 2013). According to Yang and Post (2011), the organic
- 16 phosphate content of those soils is 5-15% but this is a second order effect when compared to
- 17 misclassification. In the high bioaerosol scenario 17% of the phosphate aerosol is biological
- 18 (Figure 8A) but when misidentification is considered 81% of particles are identified as such
- 19 (Figure 8C). In the low bioaerosol scenario 2% of the phosphate aerosol is biological (Figure
- 20 8B) but when misidentification is considered 77% of the particles are identified as such
- 21 (Figure 8D). This illustrates that simplistic identification can lead to large misclassification
- 22 errors of aerosol sources.
- 23 Misidentification can also lead to misattribution. Pratt et al. (2009b) analyzed ice residuals
- 24 sampled in an orographic cloud and suggested a biological source using the simple three-
- 25 component filter applied to spectra containing calcium, sodium, organic carbon, organic
- 26 nitrogen and phosphate. The processed apatite spectrum in Figure 2, devoid of biological
- 27 material, contains all of these markers. Similar to the Storm Peak dataset, the Pratt et al.
- 28 (2009b) wave cloud occurred in west-central Wyoming which is near the Idaho phosphate
- 29 rock deposits (Figure 6) and four U.S. states with active mining of phosphate rock for use as
- inorganic fertilizer in agriculture (U.S. Geological Survey, 2016b).
- 31 The Pratt et al. (2009b) and Creamean et al. (2013, 2014) studies were performed with a
- different SPMS, the ATOFMS (Gard et al., 1997; Pratt et al., 2009a). Because the ATOFMS

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

5

8

10

13

14

18

19

© Author(s) 2016. CC-BY 3.0 License.

1 uses a desorption/ionization laser of a different wavelength (266 nm) the SVM algorithm used

2 here may not directly translate to that instrument. Instead, the calculation above assumes only

3 that the misidentification rates between the simple three-component filter and the SVM

4 algorithm applies.

4.3 Soil dust and internal dust/biological mixtures

6 Soil dust is an important but complicated category of phosphate-containing atmospheric

7 particles. Modeling studies, such as Mahowald et al. (2008), treat all phosphorus in soil dust

aerosol as inorganic. However, the phosphorus in soil investigated here took both organic and

9 inorganic forms. Walker and Syers (1976) proposed a conceptual model of transformations of

phosphorus depending on the age of the soil. At the beginning of its development, all soil

11 phosphorus is bound in its primary mineral form, matching that of the parent material, which

12 is primarily apatite (Walker and Syers, 1976; Yang and Post, 2011). As the soil ages, the

primary phosphorus is released. Some of it enters the organic reservoir and is utilized by

vegetation, some is adsorbed onto the surface of secondary soil minerals (non-occluded

15 phosphorus) and then gradually encapsulated by secondary minerals (Fe and Al oxides) into

16 an occluded form. The total phosphorus content of the soil decreases as the soil ages, due to

17 leaching. The organic fraction can encompass microorganisms, their metabolic by-products

and other biological matter at various stages of decomposition. Soil microorganisms are the

key players in converting organic phosphorus back into the mineral form (Brookes et al.,

20 1984). Yang and Post (2011) estimated organic and inorganic phosphorus content of various

21 soils based on available data. Spodosols (moist forest soils) have the highest fraction of

22 organic phosphorus (~45%) and aridsols (sandy desert soils) have the lowest (~5%) (Yang

and Post, 2011). Yang et al. (2013) compiled a global map of soil phosphorus distribution and

24 its forms and found that 20%, on average, of total phosphorus is organic. Wang et al. (2010)

arrive at 34% of soil phosphorus as organic globally.

26 The biological PALMS filter was applied to several soil dust samples (Table 2) and the

27 numbers of biological particles in all cases fall within these estimates. As would be expected,

28 soils collected in areas with less vegetation exhibit smaller biological contributions. We note

29 that organic phosphorus content is not necessarily a direct indicator of microbes since it also

30 encompasses decomposed organic matter. At this time, we are not able to delineate between

31 primary biological and biogenic or simply complex organic (such as humic acids) material.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

- 1 In the FIN03 field dataset, 56% of particles identified as biological also contained silicate
- 2 markers normally associated with mineral dust. This represents and upper limit of particles
- 3 that are an internal mixture of dust and biological material. As stated in the last paragraph,
- 4 this biological material probably does not consist of whole cells sitting on mineral particles;
- 5 such internally mixed mineral dust particle with surface whole or fragments of biological
- 6 material are not supported by EM (Peter Buseck, personal communication, 2016). It currently
- 7 remains unclear if such internally mixed particles would be counted as biological with an
- 8 optical microscope after fluorescent staining.
- 9 Internal mixtures of biological and mineral components were generated in the laboratory in
- 10 order to investigate this; an exemplary spectrum of such particle is shown in Figure 9. The
- 11 spectrum contains alumino-silicate markers consistent with mineral dust together with
- 12 phosphate markers that, in this case, come from the biological material. Using the classifier
- 13 developed in this paper on the laboratory-generated internally mixed particles correctly
- identifies the phosphate signatures to be biological.

15 **5 Conclusion**

- 16 This paper examines criteria that can be used with SPMS instruments to identify bioaerosol.
- 17 We propose a new technique of bioaerosol detection and validate it using a database of
- 18 phosphorus-bearing spectra. A simple binary classification scheme was optimized using a
- 19 SVM algorithm, with a classification error of 3%. Using the binary classifier developed in this
- 20 paper, ambient data collected at Storm Peak during the FIN03 campaign was analyzed.
- 21 Particles with phosphorus were up to 0.5% by number of all ambient particles in the 200 –
- 22 3000 nm size range. On average, 29% of these particles were identified as biological.
- 23 Our work expands on previous SPMS sampling that used a more simple Boolean three marker
- 24 criterion (CN⁻, CNO⁻ and PO₃⁻) to classify particles as primary biological or not (Creamean et
- al., 2013; 2014). We show that the presence of these markers is necessary but not sufficient.
- We show a false positive rate of the Boolean filter between 64% and 75% for a realistic
- 27 atmospheric mixture of soil dust, fly ash and primary biological particles.
- 28 The trained SVM algorithm was also used to measure the biological content of soil dusts.
- 29 Different soil dust samples can have different content of biological material with a range from
- 30 2 32% observed here. Consistent with the literature, samples taken from areas with
- 31 vegetation exhibit a higher biological content.

Published: 15 December 2016

1

© Author(s) 2016. CC-BY 3.0 License.

Acknowledgements

- 2 The authors gratefully acknowledge funding from NASA grant # NNX13AO15G, NSF grant
- 3 # AGS-1461347, NSF grant # AGS-1339264, and DOE grant # DE-SC0014487. M. A. Z.
- 4 acknowledges the support of NASA Earth and Space Science Fellowship. The authors would
- 5 like to thank Ottmar Moehler and the KIT AIDA facility staff for hosting the FIN01
- 6 workshop and Gannet Hallar, Ian McCubbin and DRI Storm Peak Laboratory for hosting the
- 7 FIN03 workshop. The authors thank the entire FIN01 and FIN03 teams for support and Peter
- 8 Buseck for useful discussions.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

1 References

- 2 Amato, P., Ménager, M., Sancelme, M., Laj, P., Mailhot, G. and Delort, A.-M.: Microbial
- 3 population in cloud water at the Puy de Dôme: Implications for the chemistry of clouds,
- 4 Atmos. Environ., 39(22), 4143–4153, doi:10.1016/j.atmosenv.2005.04.002, 2005.
- 5 Amato, P., Parazols, M., Sancelme, M., Laj, P., Mailhot, G. and Delort, A.-M.:
- 6 Microorganisms isolated from the water phase of tropospheric clouds at the Puy de DÃ'me:
- 7 major groups and growth abilities at low temperatures, FEMS Microbiol. Ecol., 59(2), 242-
- 8 254, doi:10.1111/j.1574-6941.2006.00199.x, 2007.
- 9 Artaxo, P., Maenhaut, W., Storms, H. and Van Grieken, R.: Aerosol characteristics and
- 10 sources for the Amazon Basin during the wet season, J. Geophys. Res., 95(D10), 16971,
- 11 doi:10.1029/JD095iD10p16971, 1990.
- 12 Bauer, H., Kasper-Giebl, A., Löflund, M., Giebl, H., Hitzenberger, R., Zibuschka, F. and
- 13 Puxbaum, H.: The contribution of bacteria and fungal spores to the organic carbon content of
- cloud water, precipitation and aerosols, Atmos. Res., 64(1-4), 109-119, doi:10.1016/S0169-
- 15 8095(02)00084-4, 2002.
- 16 Bauer, H., Schueller, E., Weinke, G., Berger, A., Hitzenberger, R., Marr, I. L. and Puxbaum,
- 17 H.: Significant contributions of fungal spores to the organic carbon and to the aerosol mass
- 18 balance of the urban atmospheric aerosol, Atmos. Environ., 42(22), 5542–5549,
- 19 doi:10.1016/j.atmosenv.2008.03.019, 2008.
- 20 Ben-Hur, A., Horn, D., Siegelmann, H. T. and Vapnik, V.: Support Vector Clustering, J.
- 21 Mach. Learn. Res., 2, 125–137, 2001.
- 22 Berger, V. I., Singer, D. A. and Orris, G. J.: Carbonatites of the world, explored deposits of
- 23 Nb and REE; database and grade and tonnage models: U.S. Geological Survey Open-File
- 24 Report 2009-1139, 17 p. and database., 2009.
- 25 Borys, R. D. and Wetzel, M. A.: Storm Peak Laboratory: A Research, Teaching, and Service
- 26 Facility for the Atmospheric Sciences, Bull. Am. Meteorol. Soc., 78(10), 2115-2123,
- 27 doi:10.1175/1520-0477(1997)078<2115:SPLART>2.0.CO;2, 1997.
- 28 Bowers, R. M., Lauber, C. L., Wiedinmyer, C., Hamady, M., Hallar, A. G., Fall, R., Knight,
- 29 R. and Fierer, N.: Characterization of Airborne Microbial Communities at a High-Elevation
- 30 Site and Their Potential To Act as Atmospheric Ice Nuclei, Appl. Environ. Microbiol.,

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 75(15), 5121–5130, doi:10.1128/AEM.00447-09, 2009.
- 2 Bowers, R. M., McLetchie, S., Knight, R. and Fierer, N.: Spatial variability in airborne
- 3 bacterial communities across land-use types and their relationship to the bacterial
- 4 communities of potential source environments, ISME J., 5(4), 601–612,
- 5 doi:10.1038/ismej.2010.167, 2011.
- 6 Bowers, R. M., McCubbin, I. B., Hallar, A. G. and Fierer, N.: Seasonal variability in airborne
- 7 bacterial communities at a high-elevation site, Atmos. Environ., 50, 41-49,
- 8 doi:10.1016/j.atmosenv.2012.01.005, 2012.
- 9 Brahney, J., Mahowald, N., Ward, D. S., Ballantyne, A. P. and Neff, J. C.: Is atmospheric
- 10 phosphorus pollution altering global alpine Lake stoichiometry?, Global Biogeochem. Cycles,
- 11 29(9), 1369–1383, doi:10.1002/2015GB005137, 2015.
- 12 Brookes, P. C., Powlson, D. S. and Jenkinson, D. S.: Phosphorus in the soil microbial
- 13 biomass, Soil Biol. Biochem., 16(2), 169–175, doi:10.1016/0038-0717(84)90108-1, 1984.
- 14 Burrows, S. M., Hoose, C., Pöschl, U. and Lawrence, M. G.: Ice nuclei in marine air: biogenic
- 15 particles or dust?, Atmos. Chem. Phys., 13(1), 245–267, doi:10.5194/acp-13-245-2013, 2013.
- 16 Buseck, P. R. and Posfai, M.: Airborne minerals and related aerosol particles: Effects on
- 17 climate and the environment, Proc. Natl. Acad. Sci., 96(7), 3372–3379,
- 18 doi:10.1073/pnas.96.7.3372, 1999.
- 19 Cahill, J. F., Darlington, T. K., Fitzgerald, C., Schoepp, N. G., Beld, J., Burkart, M. D. and
- 20 Prather, K. A.: Online Analysis of Single Cyanobacteria and Algae Cells under Nitrogen-
- 21 Limited Conditions Using Aerosol Time-of-Flight Mass Spectrometry, Anal. Chem., 87(16),
- 22 8039–8046, doi:10.1021/acs.analchem.5b02326, 2015.
- 23 Chernoff, C. B. and Orris, G. J.: Data set of world phosphate mines, deposits, and
- 24 occurrences--Part A. Geologic Data; Part B. Location and Mineral Economic Data: U.S.
- 25 Geological Survey Open-File Report 02-156., 2002.
- 26 Christner, B. C., Cai, R., Morris, C. E., McCarter, K. S., Foreman, C. M., Skidmore, M. L.,
- 27 Montross, S. N. and Sands, D. C.: Geographic, seasonal, and precipitation chemistry influence
- on the abundance and activity of biological ice nucleators in rain and snow, Proc. Natl. Acad.
- 29 Sci., 105(48), 18854–18859, doi:10.1073/pnas.0809816105, 2008a.
- 30 Christner, B. C., Morris, C. E., Foreman, C. M., Cai, R. and Sands, D. C.: Ubiquity of

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 Biological Ice Nucleators in Snowfall, Science, 319(5867), 1214–1214,
- 2 doi:10.1126/science.1149757, 2008b.
- 3 Cortes, C. and Vapnik, V.: Support-vector networks, Mach. Learn., 20(3), 273-297,
- 4 doi:10.1007/BF00994018, 1995.
- 5 Creamean, J. M., Suski, K. J., Rosenfeld, D., Cazorla, A., DeMott, P. J., Sullivan, R. C.,
- 6 White, A. B., Ralph, F. M., Minnis, P., Comstock, J. M., Tomlinson, J. M. and Prather, K. A.:
- 7 Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western
- 8 U.S., Science, 339(6127), 1572–1578, doi:10.1126/science.1227279, 2013.
- 9 Creamean, J. M., Lee, C., Hill, T. C., Ault, A. P., DeMott, P. J., White, A. B., Ralph, F. M.
- 10 and Prather, K. A.: Chemical properties of insoluble precipitation residue particles, J. Aerosol
- 11 Sci., 76, 13–27, doi:10.1016/j.jaerosci.2014.05.005, 2014.
- 12 Cziczo, D. J. and Froyd, K. D.: Sampling the composition of cirrus ice residuals, Atmos. Res.,
- 13 142, 15–31, doi:10.1016/j.atmosres.2013.06.012, 2014.
- 14 Cziczo, D. J., Thomson, D. S. and Murphy, D. M.: Ablation, Flux, and Atmospheric
- 15 Implications of Meteors Inferred from Stratospheric Aerosol, Science, 291(5509), 1772–1775,
- 16 doi:10.1126/science.1057737, 2001.
- 17 Cziczo, D. J., Thomson, D. S., Thompson, T. L., DeMott, P. J. and Murphy, D. M.: Particle
- 18 analysis by laser mass spectrometry (PALMS) studies of ice nuclei and other low number
- 19 density particles, Int. J. Mass Spectrom., 258(1-3), 21–29, doi:10.1016/j.ijms.2006.05.013,
- 20 2006.
- 21 Cziczo, D. J., Froyd, K. D., Hoose, C., Jensen, E. J., Diao, M., Zondlo, M. A., Smith, J. B.,
- 22 Twohy, C. H. and Murphy, D. M.: Clarifying the Dominant Sources and Mechanisms of
- 23 Cirrus Cloud Formation, Science, 340, 1320–1324, 2013.
- 24 DeLeon-Rodriguez, N., Lathem, T. L., Rodriguez-R, L. M., Barazesh, J. M., Anderson, B. E.,
- 25 Beyersdorf, A. J., Ziemba, L. D., Bergin, M., Nenes, A. and Konstantinidis, K. T.:
- 26 Microbiome of the upper troposphere: Species composition and prevalence, effects of tropical
- 27 storms, and atmospheric implications, Proc. Natl. Acad. Sci., 110(7), 2575-2580,
- 28 doi:10.1073/pnas.1212089110, 2013.
- 29 DeMott, P. J., Cziczo, D. J., Prenni, A. J., Murphy, D. M., Kreidenweis, S. M., Thomson, D.
- 30 S., Borys, R. and Rogers, D. C.: Measurements of the concentration and composition of

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 nuclei for cirrus formation, Proc. Natl. Acad. Sci., 100(25), 14655-14660,
- 2 doi:10.1073/pnas.2532677100, 2003.
- 3 Ebert, M., Worringen, A., Benker, N., Mertes, S., Weingartner, E. and Weinbruch, S.:
- 4 Chemical composition and mixing-state of ice residuals sampled within mixed phase clouds,
- 5 Atmos. Chem. Phys., 11(6), 2805–2816, doi:10.5194/acp-11-2805-2011, 2011.
- 6 Fahlgren, C., Hagstrom, A., Nilsson, D. and Zweifel, U. L.: Annual Variations in the
- 7 Diversity, Viability, and Origin of Airborne Bacteria, Appl. Environ. Microbiol., 76(9), 3015–
- 8 3025, doi:10.1128/AEM.02092-09, 2010.
- 9 Fang, Z., Ouyang, Z., Zheng, H., Wang, X. and Hu, L.: Culturable Airborne Bacteria in
- 10 Outdoor Environments in Beijing, China, Microb. Ecol., 54(3), 487-496,
- 11 doi:10.1007/s00248-007-9216-3, 2007.
- 12 Fergenson, D. P., Pitesky, M. E., Tobias, H. J., Steele, P. T., Czerwieniec, G. A., Russell, S.
- 13 C., Lebrilla, C. B., Horn, J. M., Coffee, K. R., Srivastava, A., Pillai, S. P., Shih, M.-T. P.,
- Hall, H. L., Ramponi, A. J., Chang, J. T., Langlois, R. G., Estacio, P. L., Hadley, R. T., Frank,
- 15 M. and Gard, E. E.: Reagentless Detection and Classification of Individual Bioaerosol
- 16 Particles in Seconds, Anal. Chem., 76(2), 373–378, doi:10.1021/ac034467e, 2004.
- 17 Friedman, B., Zelenyuk, A., Beranek, J., Kulkarni, G., Pekour, M., Gannet Hallar, A.,
- 18 McCubbin, I. B., Thornton, J. A. and Cziczo, D. J.: Aerosol measurements at a high-elevation
- 19 site: composition, size, and cloud condensation nuclei activity, Atmos. Chem. Phys., 13(23),
- 20 11839–11851, doi:10.5194/acp-13-11839-2013, 2013.
- 21 Froyd, K. D., Murphy, D. M., Lawson, P., Baumgardner, D. and Herman, R. L.: Aerosols that
- 22 form subvisible cirrus at the tropical tropopause, Atmos. Chem. Phys., 10(1), 209–218,
- 23 doi:10.5194/acp-10-209-2010, 2010.
- 24 Gabey, A. M., Gallagher, M. W., Whitehead, J., Dorsey, J. R., Kaye, P. H. and Stanley, W.
- 25 R.: Measurements and comparison of primary biological aerosol above and below a tropical
- 26 forest canopy using a dual channel fluorescence spectrometer, Atmos. Chem. Phys., 10(10),
- 27 4453–4466, doi:10.5194/acp-10-4453-2010, 2010.
- 28 Gallavardin, S., Lohmann, U. and Cziczo, D.: Analysis and differentiation of mineral dust by
- 29 single particle laser mass spectrometry, Int. J. Mass Spectrom., 274(1--3), 56-63,
- 30 doi:http://dx.doi.org/10.1016/j.ijms.2008.04.031, 2008.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 Gard, E., Mayer, J. E., Morrical, B. D., Dienes, T., Fergenson, D. P. and Prather, K. A.: Real-
- 2 Time Analysis of Individual Atmospheric Aerosol Particles: Design and Performance of a
- 3 Portable ATOFMS, Anal. Chem., 69(20), 4083–4091, doi:10.1021/ac970540n, 1997.
- 4 Garimella, S., Huang, Y.-W., Seewald, J. S. and Cziczo, D. J.: Cloud condensation nucleus
- 5 activity comparison of dry- and wet-generated mineral dust aerosol: the significance of
- 6 soluble material, Atmos. Chem. Phys., 14(12), 6003-6019, doi:10.5194/acp-14-6003-2014,
- 7 2014.
- 8 Georgakopoulos, D. G., Després, V., Fröhlich-Nowoisky, J., Psenner, R., Ariya, P. A., Pósfai,
- 9 M., Ahern, H. E., Moffett, B. F. and Hill, T. C. J.: Microbiology and atmospheric processes:
- 10 biological, physical and chemical characterization of aerosol particles, Biogeosciences, 6(4),
- 11 721–737, doi:10.5194/bg-6-721-2009, 2009.
- 12 Griffin, D. W., Garrison, V. H., Herman, J. R. and Shinn, E. A.: African desert dust in the
- 13 Caribbean atmosphere: Microbiology and public health, Aerobiologia (Bologna)., 17(3), 203–
- 14 213, doi:10.1023/A:1011868218901, 2001.
- 15 Griffin, D. W., Westphal, D. L. and Gray, M. A.: Airborne microorganisms in the African
- 16 desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209,
- 17 Aerobiologia (Bologna)., 22(3), 211–226, doi:10.1007/s10453-006-9033-z, 2006.
- 18 Harrison, R. M., Jones, A. M., Biggins, P. D. E., Pomeroy, N., Cox, C. S., Kidd, S. P.,
- 19 Hobman, J. L., Brown, N. L. and Beswick, A.: Climate factors influencing bacterial count in
- 20 background air samples, Int. J. Biometeorol., 49(3), 167–178, doi:10.1007/s00484-004-0225-
- 21 3, 2005.
- 22 Hill, S. C., Pinnick, R. G., Niles, S., Pan, Y.-L., Holler, S., Chang, R. K., Bottiger, J., Chen,
- 23 B. T., Orr, C.-S. and Feather, G.: Real-time measurement of fluorescence spectra from single
- 24 airborne biological particles, F. Anal. Chem. Technol., 3(4-5), 221-239,
- 25 doi:10.1002/(SICI)1520-6521(1999)3:4/5<221::AID-FACT2>3.0.CO;2-7, 1999.
- Hiranuma, N., Möhler, O., Yamashita, K., Tajiri, T., Saito, A., Kiselev, A., Hoffmann, N.,
- 27 Hoose, C., Jantsch, E., Koop, T. and Murakami, M.: Ice nucleation by cellulose and its
- 28 potential contribution to ice formation in clouds, Nat. Geosci., 8(4), 273-277,
- 29 doi:10.1038/ngeo2374, 2015.
- 30 Hoose, C., Kristjánsson, J. E. and Burrows, S. M.: How important is biological ice nucleation
- 31 in clouds on a global scale?, Environ. Res. Lett., 5(2), 024009, doi:10.1088/1748-

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 9326/5/2/024009, 2010.
- 2 Jacobson, M. Z. and Streets, D. G.: Influence of future anthropogenic emissions on climate,
- 3 natural emissions, and air quality, J. Geophys. Res., 114(D8), D08118,
- 4 doi:10.1029/2008JD011476, 2009.
- 5 Kaye, P. H., Barton, J. E., Hirst, E. and Clark, J. M.: Simultaneous light scattering and
- 6 intrinsic fluorescence measurement for the classification of airborne particles, Appl. Opt.,
- 7 39(21), 3738, doi:10.1364/AO.39.003738, 2000.
- 8 Kaye, P. H., Stanley, W. R., Hirst, E., Foot, E. V., Baxter, K. L. and Barrington, S. J.: Single
- 9 particle multichannel bio-aerosol fluorescence sensor, Opt. Express, 13(10), 3583,
- 10 doi:10.1364/OPEX.13.003583, 2005.
- 11 Koppelaar, R. H. E. M. and Weikard, H. P.: Assessing phosphate rock depletion and
- 12 phosphorus recycling options, Glob. Environ. Chang., 23(6), 1454-1466,
- doi:10.1016/j.gloenvcha.2013.09.002, 2013.
- 14 Li, J., Pósfai, M., Hobbs, P. V. and Buseck, P. R.: Individual aerosol particles from biomass
- 15 burning in southern Africa: 2, Compositions and aging of inorganic particles, J. Geophys.
- 16 Res. Atmos., 108(D13), n/a-n/a, doi:10.1029/2002JD002310, 2003a.
- 17 Li, J., Anderson, J. R. and Buseck, P. R.: TEM study of aerosol particles from clean and
- 18 polluted marine boundary layers over the North Atlantic, J. Geophys. Res., 108(D6), 4189,
- 19 doi:10.1029/2002JD002106, 2003b.
- 20 Mahowald, N., Jickells, T. D., Baker, A. R., Artaxo, P., Benitez-Nelson, C. R., Bergametti,
- 21 G., Bond, T. C., Chen, Y., Cohen, D. D., Herut, B., Kubilay, N., Losno, R., Luo, C.,
- 22 Maenhaut, W., McGee, K. A., Okin, G. S., Siefert, R. L. and Tsukuda, S.: Global distribution
- 23 of atmospheric phosphorus sources, concentrations and deposition rates, and anthropogenic
- 24 impacts, Global Biogeochem. Cycles, 22(4), n/a–n/a, doi:10.1029/2008GB003240, 2008.
- 25 Mahowald, N. M., Artaxo, P., Baker, A. R., Jickells, T. D., Okin, G. S., Randerson, J. T. and
- 26 Townsend, A. R.: Impacts of biomass burning emissions and land use change on Amazonian
- atmospheric phosphorus cycling and deposition, Global Biogeochem. Cycles, 19(4), n/a–n/a,
- 28 doi:10.1029/2005GB002541, 2005.
- 29 Matthias-Maser, S. and Jaenicke, R.: Examination of atmospheric bioaerosol particles with
- 30 radii > 0.2 μm, J. Aerosol Sci., 25(8), 1605–1613, doi:10.1016/0021-8502(94)90228-3,

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 1994.
- 2 Möhler, O., Georgakopoulos, D. G., Morris, C. E., Benz, S., Ebert, V., Hunsmann, S.,
- 3 Saathoff, H., Schnaiter, M. and Wagner, R.: Heterogeneous ice nucleation activity of bacteria:
- 4 new laboratory experiments at simulated cloud conditions, Biogeosciences, 5(5), 1425–1435,
- 5 doi:10.5194/bg-5-1425-2008, 2008.
- 6 Murphy, D. M.: The design of single particle laser mass spectrometers, Mass Spectrom. Rev.,
- 7 26(2), 150–165, doi:10.1002/mas.20113, 2007.
- 8 Murphy, D. M., Cziczo, D. J., Hudson, P. K., Thomson, D. S., Wilson, J. C., Kojima, T. and
- 9 Buseck, P. R.: Particle Generation and Resuspension in Aircraft Inlets when Flying in Clouds,
- 10 Aerosol Sci. Technol., 38(4), 401–409, doi:10.1080/02786820490443094, 2004.
- 11 O'Connor, D. J., Healy, D. A., Hellebust, S., Buters, J. T. M. and Sodeau, J. R.: Using the
- 12 WIBS-4 (Waveband Integrated Bioaerosol Sensor) Technique for the On-Line Detection of
- 13 Pollen Grains, Aerosol Sci. Technol., 48(4), 341–349, doi:10.1080/02786826.2013.872768,
- 14 2014.
- 15 Orris, G. J. and Grauch, R. I.: Rare earth element mines, deposits, and occurrences: U.S.
- 16 Geological Survey, Open-File Report 02-189., 2002.
- Pan, Y., Holler, S., Chang, R. K., Hill, S. C., Pinnick, R. G., Niles, S. and Bottiger, J. R.:
- 18 Single-shot fluorescence spectra of individual micrometer-sized bioaerosols illuminated by a
- 19 351- or a 266-nm ultraviolet laser, Opt. Lett., 24(2), 116, doi:10.1364/OL.24.000116, 1999.
- 20 Pósfai, M., Anderson, J. R., Buseck, P. R., Shattuck, T. W. and Tindale, N. W.: Constituents
- 21 of a remote pacific marine aerosol: A tem study, Atmos. Environ., 28(10), 1747–1756,
- 22 doi:10.1016/1352-2310(94)90137-6, 1994.
- 23 Pósfai, M., Anderson, J. R., Buseck, P. R. and Sievering, H.: Compositional variations of sea-
- 24 salt-mode aerosol particles from the North Atlantic, J. Geophys. Res., 100(D11), 23063,
- 25 doi:10.1029/95JD01636, 1995.
- 26 Pósfai, M., Li, J., Anderson, J. R. and Buseck, P. R.: Aerosol bacteria over the Southern
- 27 Ocean during ACE-1, Atmos. Res., 66(4), 231–240, doi:10.1016/S0169-8095(03)00039-5,
- 28 2003a.
- 29 Pósfai, M., Simonics, R., Li, J., Hobbs, P. V. and Buseck, P. R.: Individual aerosol particles
- 30 from biomass burning in southern Africa: 1. Compositions and size distributions of

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 carbonaceous particles, J. Geophys. Res. Atmos., 108(D13), n/a-n/a,
- 2 doi:10.1029/2002JD002291, 2003b.
- 3 Pratt, K. A., Mayer, J. E., Holecek, J. C., Moffet, R. C., Sanchez, R. O., Rebotier, T. P.,
- 4 Furutani, H., Gonin, M., Fuhrer, K., Su, Y., Guazzotti, S. and Prather, K. A.: Development
- 5 and Characterization of an Aircraft Aerosol Time-of-Flight Mass Spectrometer, Anal. Chem.,
- 6 81(5), 1792–1800, doi:10.1021/ac801942r, 2009a.
- 7 Pratt, K. A., DeMott, P. J., French, J. R., Wang, Z., Westphal, D. L., Heymsfield, A. J.,
- 8 Twohy, C. H., Prenni, A. J. and Prather, K. A.: In situ detection of biological particles in
- 9 cloud ice-crystals, Nat. Geosci., 2, 398–401, 2009b.
- 10 Prenni, A. J., Petters, M. D., Kreidenweis, S. M., Heald, C. L., Martin, S. T., Artaxo, P.,
- 11 Garland, R. M., Wollny, A. G. and Pöschl, U.: Relative roles of biogenic emissions and
- 12 Saharan dust as ice nuclei in the Amazon basin, Nat. Geosci., 2(6), 402-405,
- 13 doi:10.1038/ngeo517, 2009.
- 14 Prospero, J. M., Blades, E., Mathison, G. and Naidu, R.: Interhemispheric transport of viable
- 15 fungi and bacteria from Africa to the Caribbean with soil dust, Aerobiologia (Bologna).,
- 16 21(1), 1–19, doi:10.1007/s10453-004-5872-7, 2005.
- 17 Pruppacher, H. R. and Klett, J. D.: Microphysics of Clouds and Precipitation, 2nd ed., Kluwer
- 18 Academic Publishers, Norwell, MA., 2003.
- 19 Sattler, B., Puxbaum, H. and Psenner, R.: Bacterial growth in supercooled cloud droplets,
- 20 Geophys. Res. Lett., 28(2), 239–242, doi:10.1029/2000GL011684, 2001.
- 21 Sesartic, A., Lohmann, U. and Storelymo, T.: Bacteria in the ECHAM5-HAM global climate
- 22 model, Atmos. Chem. Phys., 12(18), 8645–8661, doi:10.5194/acp-12-8645-2012, 2012.
- 23 Sesartic, A., Lohmann, U. and Storelvmo, T.: Modelling the impact of fungal spore ice nuclei
- 24 on clouds and precipitation, Environ. Res. Lett., 8(1), 014029, doi:10.1088/1748-
- 25 9326/8/1/014029, 2013.
- 26 Smith, D. J. and Griffin, D. W.: Inadequate methods and questionable conclusions in
- 27 atmospheric life study, Proc. Natl. Acad. Sci., 110(23), E2084–E2084,
- 28 doi:10.1073/pnas.1302612110, 2013.
- 29 Smith, D. J., Jaffe, D. A., Birmele, M. N., Griffin, D. W., Schuerger, A. C., Hee, J. and
- 30 Roberts, M. S.: Free Tropospheric Transport of Microorganisms from Asia to North America,

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 Microb. Ecol., 64(4), 973–985, doi:10.1007/s00248-012-0088-9, 2012.
- 2 Smith, D. J., Timonen, H. J., Jaffe, D. A., Griffin, D. W., Birmele, M. N., Perry, K. D., Ward,
- 3 P. D. and Roberts, M. S.: Intercontinental Dispersal of Bacteria and Archaea by Transpacific
- 4 Winds, Appl. Environ. Microbiol., 79(4), 1134–1139, doi:10.1128/AEM.03029-12, 2013.
- 5 Sodeman, D. A., Toner, S. M. and Prather, K. A.: Determination of Single Particle Mass
- 6 Spectral Signatures from Light-Duty Vehicle Emissions, Environ. Sci. Technol., 39(12),
- 7 4569–4580, doi:10.1021/es0489947, 2005.
- 8 Spracklen, D. V. and Heald, C. L.: The contribution of fungal spores and bacteria to regional
- 9 and global aerosol number and ice nucleation immersion freezing rates, Atmos. Chem. Phys.,
- 10 14(17), 9051–9059, doi:10.5194/acp-14-9051-2014, 2014.
- Steinke, I., Funk, R., Busse, J., Iturri, A., Kirchen, S., Leue, M., Möhler, O., Schwartz, T.,
- 12 Schnaiter, M., Sierau, B., Toprak, E., Ullrich, R., Ulrich, A., Hoose, C. and Leisner, T.: Ice
- 13 nucleation activity of agricultural soil dust aerosols from Mongolia, Argentina, and Germany,
- 14 J. Geophys. Res. Atmos., doi:10.1002/2016JD025160, 2016.
- 15 Thomson, D. S., Schein, M. E. and Murphy, D. M.: Particle analysis by laser mass
- spectrometry {WB}-57 instrument overview, Aerosol Sci. Technol., 33, 153–169, 2000.
- 17 Toprak, E. and Schnaiter, M.: Fluorescent biological aerosol particles measured with the
- 18 Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year
- 19 field study, Atmos. Chem. Phys., 13(1), 225–243, doi:10.5194/acp-13-225-2013, 2013.
- 20 Twohy, C. H., McMeeking, G. R., DeMott, P. J., McCluskey, C. S., Hill, T. C. J., Burrows, S.
- 21 M., Kulkarni, G. R., Tanarhte, M., Kafle, D. N. and Toohey, D. W.: Abundance of fluorescent
- 22 biological aerosol particles at temperatures conducive to the formation of mixed-phase and
- 23 cirrus clouds, Atmos. Chem. Phys., 16(13), 8205–8225, doi:10.5194/acp-16-8205-2016, 2016.
- 24 U.S. Geological Survey: 2013 Minerals Yearbook. Rare Earths., 2016a.
- 25 U.S. Geological Survey: Mineral commodity summaries 2016. [online] Available from:
- 26 http://dx.doi.org/10.3133/70140094, 2016b.
- 27 Walker, T. W. and Syers, J. K.: The fate of phosphorus during pedogenesis, Geoderma, 15(1),
- 28 1–19, doi:10.1016/0016-7061(76)90066-5, 1976.
- 29 Wang, R., Balkanski, Y., Boucher, O., Ciais, P., Peñuelas, J. and Tao, S.: Significant
- 30 contribution of combustion-related emissions to the atmospheric phosphorus budget, Nat.

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

- 1 Geosci., 8(1), 48–54, doi:10.1038/ngeo2324, 2014.
- 2 Wang, Y. P., Law, R. M. and Pak, B.: A global model of carbon, nitrogen and phosphorus
- 3 cycles for the terrestrial biosphere, Biogeosciences, 7(7), 2261–2282, doi:10.5194/bg-7-2261-
- 4 2010, 2010.
- 5 Wiedinmyer, C., Bowers, R. M., Fierer, N., Horanyi, E., Hannigan, M., Hallar, A. G.,
- 6 McCubbin, I. and Baustian, K.: The contribution of biological particles to observed
- 7 particulate organic carbon at a remote high altitude site, Atmos. Environ., 43(28), 4278–4282,
- 8 doi:10.1016/j.atmosenv.2009.06.012, 2009.
- 9 Xia, X., Wang, J., Ji, J., Zhang, J., Chen, L. and Zhang, R.: Bacterial Communities in Marine
- 10 Aerosols Revealed by 454 Pyrosequencing of the 16S rRNA Gene*, J. Atmos. Sci., 72(8),
- 11 2997–3008, doi:10.1175/JAS-D-15-0008.1, 2015.
- 12 Xia, Y., Conen, F. and Alewell, C.: Total bacterial number concentration in free tropospheric
- 13 air above the Alps, Aerobiologia (Bologna)., 29(1), 153–159, doi:10.1007/s10453-012-9259-
- 14 x, 2013.
- 15 Yang, X. and Post, W. M.: Phosphorus transformations as a function of pedogenesis: A
- synthesis of soil phosphorus data using Hedley fractionation method, Biogeosciences, 8(10),
- 17 2907–2916, doi:10.5194/bg-8-2907-2011, 2011.
- 18 Yang, X., Post, W. M., Thornton, P. E. and Jain, A.: The distribution of soil phosphorus for
- 19 global biogeochemical modeling, Biogeosciences, 10(4), 2525-2537, doi:10.5194/bg-10-
- 20 2525-2013, 2013.
- 21 Zender, C. S.: Mineral Dust Entrainment and Deposition (DEAD) model: Description and
- 22 1990s dust climatology, J. Geophys. Res., 108(D14), 4416, doi:10.1029/2002JD002775,
- 23 2003.
- 24 Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J., Jayne, J. T. and Kolb, C. E.: A
- 25 Numerical Characterization of Particle Beam Collimation by an Aerodynamic Lens-Nozzle
- 26 System: Part I. An Individual Lens or Nozzle, Aerosol Sci. Technol., 36(5), 617-631,
- 27 doi:10.1080/02786820252883856, 2002.
- 28 Zhang, X., Smith, K. A., Worsnop, D. R., Jimenez, J. L., Jayne, J. T., Kolb, C. E., Morris, J.
- 29 and Davidovits, P.: Numerical Characterization of Particle Beam Collimation: Part II
- 30 Integrated Aerodynamic-Lens-Nozzle System, Aerosol Sci. Technol., 38(6), 619-638,

© Author(s) 2016. CC-BY 3.0 License.

- 1 doi:10.1080/02786820490479833, 2004.
- 2 Ziemba, L. D., Beyersdorf, A. J., Chen, G., Corr, C. A., Crumeyrolle, S. N., Diskin, G.,
- 3 Hudgins, C., Martin, R., Mikoviny, T., Moore, R., Shook, M., Thornhill, K. L., Winstead, E.
- 4 L., Wisthaler, A. and Anderson, B. E.: Airborne observations of bioaerosol over the Southeast
- 5 United States using a Wideband Integrated Bioaerosol Sensor, J. Geophys. Res. Atmos.,
- 6 doi:10.1002/2015JD024669, 2016.

Published: 15 December 2016

- Table 1. Measurements of biological aerosol in the atmosphere (NR not reported, FBAP fluorescent particles, attributed to bioaerosol).
- 2 *Comment in response to DeLeon-Rodriguez et al., 2013 by Smith and Griffin (2013).

Site	Elevation (m)	Technique	Concentration of bioaerosol detected (particles m ⁻³)	% of total particles (size range)	Type of bioaerosol	Reference
Ground sites						
Jungfraujoch	3,450	Fluorescent microscopy	3.4×10 ⁴ (free troposphere) 7.5×10 ⁴ (over surface)	NR	Bacteria	Xia et al., 2013
Storm Peak Lab	3,220	Fluorescent microscopy	$9.6 \times 10^{5} - 6.6 \times 10^{6}$	0.5-5% (0.5-20 μm)	Bacteria (51%) Fungi (45%) Plant material (4%)	Wiedinmyer et al., 2009
Storm Peak Lab	3,220	Fluorescent microscopy	3.9×10 ³ (spring) 4.0×10 ⁴ (summer) 1.5×10 ⁵ (fall) 2.7×10 ⁴ (winter)	22% (0.5-20 μm)	Bacteria	Bowers et al., 2012
Mt. Rax (Alps)	1,644	Fluorescent	1.1×10 ⁴ (bacteria) 3.5×10 ² (fungi)	NR	Bacteria and fungi	Bauer et al., 2002
Various locations in Colorado	1,485-2,973	Fluorescent microscopy	$1.0 \times 10^5 - 2.6 \times 10^6$	NR	Bacteria	Bowers et al., 2011
Vienna	150-550	Fluorescent microscopy	$3.6 \times 10^3 - 2.9 \times 10^4$	NR	Fungi	Bauer et al., 2008
U.S. Virgin Islands	NR	Fluorescent microscopy	$3.6 \times 10^4 - 5.7 \times 10^5$	NR	Bacteria and possible viruses	Griffin et al., 2001
Various sites in the U.K.	50-130	Fluorescent microscopy	5.3×10 ³ – 1.7×10 ⁴ (spring) 8.3×10 ³ – 1.5×10 ⁴ (summer) 6.0×10 ³ – 1.4×10 ⁴ (fall) 2.9×10 ³ – 1.0×10 ⁴ (winter)	NR	Bacteria	Harrison et al., 2005
Danum Valley, Malaysian Borneo	150-1,000	WIBS	2.0×10 ⁵ (above forest canopy)	NR	FBAP	Gabey et al., 2010

Atmos. Chem. Phys. Discuss., doi:10.5194/acp-2016-1119, 2016 Manuscript under review for journal Atmos. Chem. Phys. Published: 15 December 2016 © Author(s) 2016. CC-BY 3.0 License.

			1.5×10 ⁶ (below forest canopy)			
Karlsruhe, Germany	112	WIBS	2.9×10 ⁴ (spring) 4.6×10 ⁴ (summer) 2.9×10 ⁴ (fall) 1.9×10 ⁴ (winter)	4-11% (0.5-16 μm)	FBAP	Toprak and Schnaiter, 2013
Aircraft campaigns						
Cape Grim	30-5,400	TEM	NR	1% (>0.2 μm)	Bacteria	Pósfai et al., 2003
Flights around the Gulf of Mexico, California and Florida	3,000-10,000	Fluorescent microscopy	$3.6 \times 10^4 - 3.0 \times 10^5$	3.6-276% (0.25-1 μm)*	Mostly bacteria	DeLeon-Rodriguez et al., 2013
Flights over southeastern U.S. (SEAC ⁴ RS)	Vertical profiles up to 12,000	WIBS	3.4×10 ⁵ (average, <0.5 km) 7.0×10 ⁴ (average, 3 km) 1.8×10 ⁴ (average, 6 km)	5-10% (0.6-5 μm)	FBAP	Ziemba et al., 2016
Flights over Colorado, Wyoming, Nebraska and South Dakota	Vertical profiles up to 10,000	WIBS	1.0×10 ⁴ – 1.0×10 ⁵ (<2.5 km) 0 – 3.0×10 ³ (>2.5 km)	NR	FBAP	Twohy et al., 2016

Manuscript under review for journal Atmos. Chem. Phys.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

- Table 2. Soil dust samples used in this work. The last column shows the results of analysis
- with the biological filter developed here as a percentage of negative particles sampled.

Sample	Site description	Approx. collection coordinates	% biological
Bächli	Outflow sediment of a glacier in a feldspar-rich granitic environment. No vegetation.	46.6 N, 8.3 E	6.0
Morocco	Rock desert with vegetation. Close proximity to a road.	33.2 N, 2.0 W	20.4
Ethiopia	Collected in Lake Shala National Park from a region between two lakes. Area vegetated by shrubs and acacia trees.	7.5 N, 38.7 E	32.1
Storm Peak Lab	Collected near Storm Peak Lab. Grass and shrubs present.	40.5 N, 106.7 W	31.3
Argentina	La Pampa province. Top soil collected from arable land with sandy loam (Steinke et al., 2016).	37 S, 64 W (approximate)	21.3
China/Inner Mongolia	Xilingele steppe. Top soil collected from a pasture with loam (Steinke et al., 2016).	44 N, 117 E (approximate)	2.0
Saudi Arabia	Various samples from several locations. Arid, sandy soils.	24.6 N - 26.3 N, 46.1 E - 49.6 E	14.5

3

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

1 Table 3. Literature estimates of emission rates of primary biological particles, dust and fly

2 ash.

Particle	Emissions (Tg yr ⁻¹)			
Particle	low estimate	high estimate		
Dust	1490 (Zender, 2003)	7800 (Jacobson and Streets,		
		2009)		
Primary	186 (Mahowald et al., 2008)	298 (Jacobson and Streets,		
biological		2009)		
Fly ash	14.9 (Garimella et al., 2016)	390 (Garimella et al., 2016)		

3

Published: 15 December 2016

3

4

5

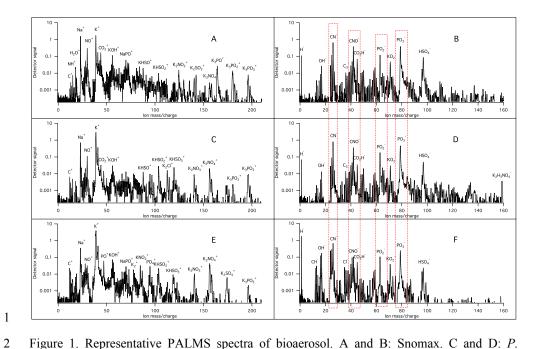


Figure 1. Representative PALMS spectra of bioaerosol. A and B: Snomax. C and D: *P. syringae*. E and F: Hazelnut wash water. Right and left columns are positive and negative polarity, respectively. Red dotted lines are features indicated in the literature as markers for biological material.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

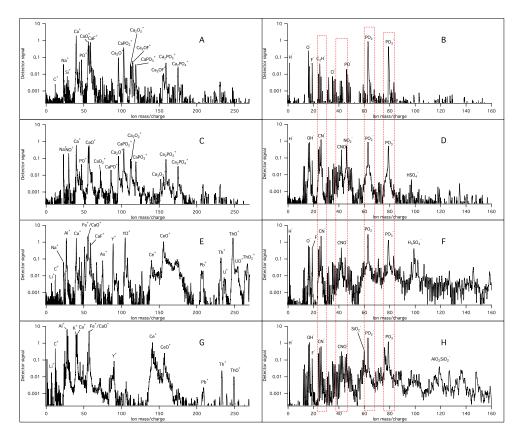


Figure 2. Representative PALMS spectra of phosphorus-rich minerals and ambient aerosol. A and B: Unprocessed apatite. C and D: Apatite processed with HNO₃ (see text for details). E and F: Monazite-Ce. G and H: Ambient particles sampled at Storm Peak matching monazite chemistry. Right and left columns are positive and negative polarity, respectively. Red dotted lines are features indicated in the literature as markers for biological material.

6 7

1

3

4

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

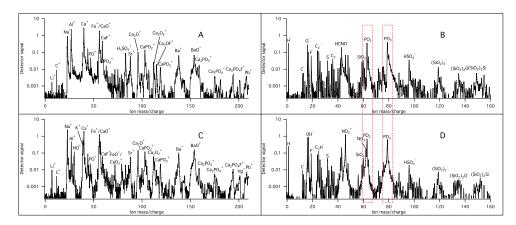
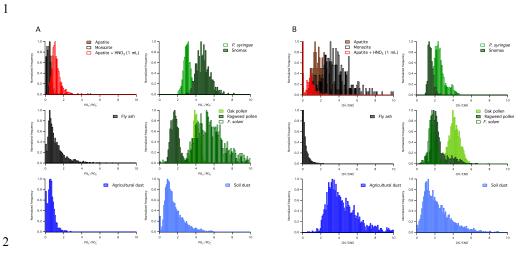



Figure 3. Representative PALMS spectra of coal fly ash from the J. Robert Welsh power plant. A and B: Unprocessed fly ash. C and D: Fly ash processed with HNO₃ (see text for details). Right and left columns are positive and negative polarity, respectively. Red dotted lines are features indicated in the literature as markers for biological material.

Published: 15 December 2016

3 Figure 4. A: Normalized histograms of the PO₃⁻/PO₂⁻ ratio for the test aerosol. B: Normalized

- 4 histograms of the CN⁻/CNO⁻ ratio for the same test aerosol as in A. Delineation between the
- 5 clusters at a PO₃⁻/PO₂⁻ ratio of 3 results in a 70-80% classification accuracy depending on the
- 6 species considered.

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

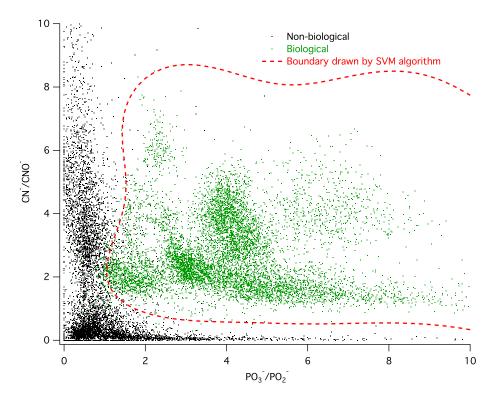
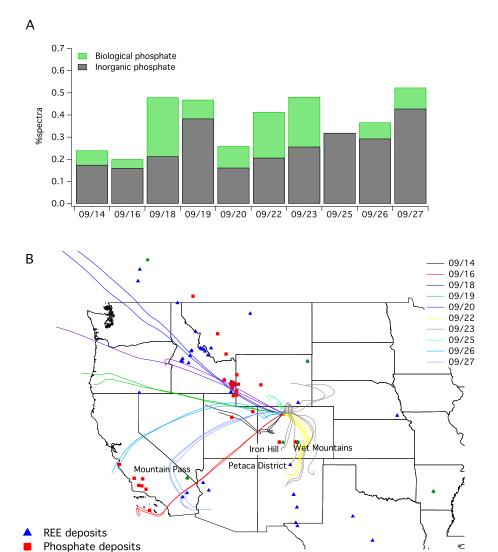


Figure 5. Inorganic and biological particle clusters in CN⁻/CNO⁻ vs. PO₃⁻/PO₂⁻ space. The SVM algorithm delineates between the clusters with the red dashed line with an overall 97% classification accuracy.

4 5


1

Published: 15 December 2016

© Author(s) 2016. CC-BY 3.0 License.

2 Figure 6. A: The percentage of ambient aerosol particles from the dataset categorized as

- 3 biological and inorganic (phosphate-bearing mineral dust or fly ash) phosphate using the
- 4 criteria developed in this work. Note that at this location and time of year inorganic phosphate
- 5 dominates biological. B: HYSPLIT back trajectories plotted for ten measurement days at
- 6 Storm Peak Laboratory. Locations of REE, phosphate and carobonatite deposits, sourced from
- 7 U.S. Geological Survey, are co-plotted (Berger et al., 2009; Chernoff and Orris, 2002; Orris
- 8 and Grauch, 2002).

1

Carbonatite deposits

Published: 15 December 2016

1 2

3

4

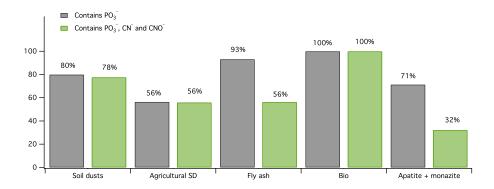
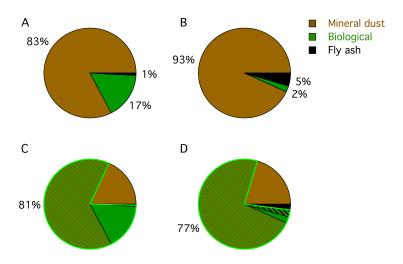


Figure 7. Percentage of particles that include PO₃-, CN⁻ and CNO⁻ markers in five classes of atmospherically-relevant aerosol spectra acquired with PALMS in this work. Note that the green bars indicate the percentage of particles of each type identified as biological using


- 5 literature criteria. In the case of bioaerosol the identification is correct. In all other aerosol
- 6 classes the green bar denotes a level of misidentification.

Published: 15 December 2016

1

2 Figure 8. Abundance of bioaerosol, mineral dust and fly ash in the atmosphere constructed 3 using emissions estimates in Table 3 A: Highest estimate for bioaerosol coupled to lowest 4 estimates for dust and fly ash. B: Lowest estimate of bioaerosol in the atmosphere coupled to 5 highest estimates for dust and fly ash. C and D: Effect of misidentification of phosphate- and 6 organic nitrogen-containing aerosol as biological using the emissions in A and B, 7 respectively. The hatched regions correspond to the misidentified fractions of mineral dust 8 and fly ash. In these estimates the correct emissions (solid green region) in A and B (17 and 9 2%, respectively) are overestimated (hatched green region of misidentified aerosol plus solid 10 green region) in C and D (as 81 and 77%, respectively).

Published: 15 December 2016

1 2

3

4

5

6

mineral dust.

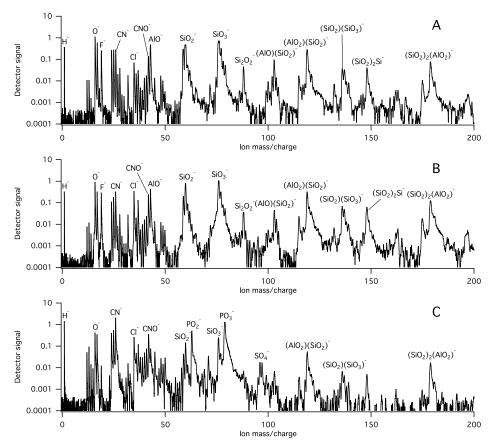


Figure 9. Exemplary PALMS negative polarity spectra of A: dry-dispersed illite NX, B: wet-dispersed illite NX from a distilled, deionized water slurry and C: similarly wet-dispersed illite NX but from a water slurry that also contained *F. solani* spores. Note that phosphate features are absent in A and B but present in C due to addition of biological material to the